
- 8-Bit Serial-In, Parallel-Out Shift
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Shift Register Has Direct Clear
- Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs

description

The 'HC595 devices contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and serial outputs for cascading. When the output-enable (OE) input is high, the outputs are in the high-impedance state.

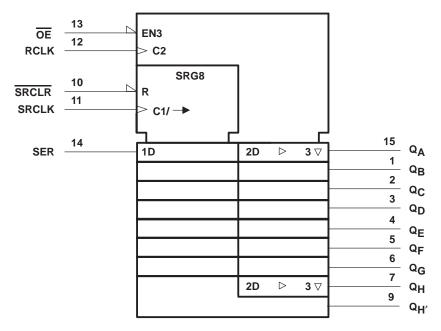
Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

The SN54HC595 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74HC595 is characterized for operation from -40° C to 85°C.

NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

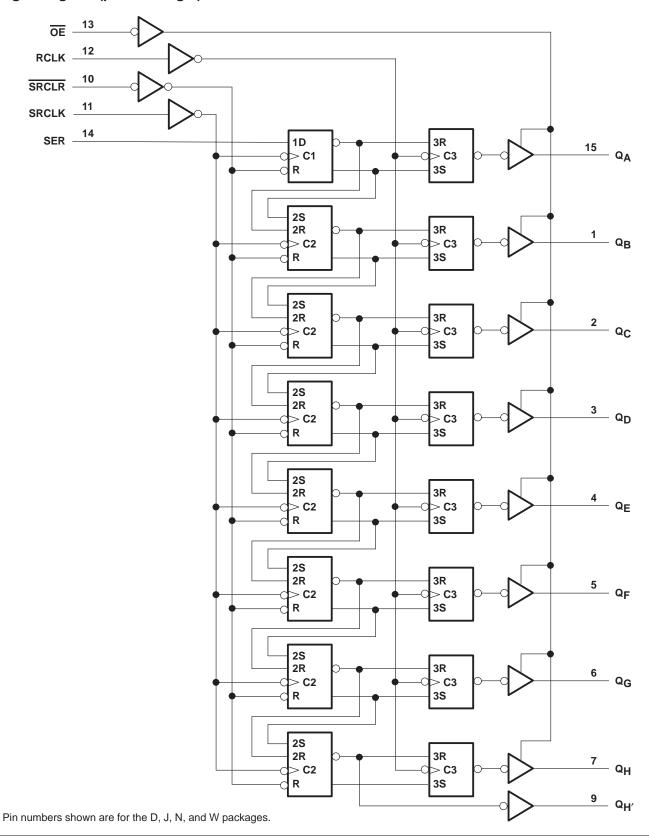
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 2000, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SN54HC595, SN74HC595 8-BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS

SCLS041C - DECEMBER 1982 - REVISED JUNE 2000

				Fl	JNCTION TABLE
		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	OE	FUNCTION
Х	Х	Х	Х	Н	Outputs QA–QH are disabled.
Х	Х	Х	Х	L	Outputs QA-QH are enabled.
Х	Х	L	Х	Х	Shift register is cleared.
L	Ŷ	Н	х	Х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
н	Ŷ	Н	Х	Х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	\downarrow	Н	Х	Х	Shift-register state is not changed.
Х	Х	Х	\uparrow	Х	Shift-register data is stored in the storage register.
Х	Х	Х	\downarrow	Х	Storage-register state is not changed.


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, N, and W packages.

logic diagram (positive logic)

timing diagram

SRCLK	
SER	
RCLK	
SRCLR	
OE	
Q _A	
QB	
QC	
QD	
QE	
Q _F	
QG	
QH	
Q _H ,	

SN54HC595, SN74HC595 **8-BIT SHIFT REGISTERS** WITH 3-STATE OUTPUT REGISTERS

SCLS041C - DECEMBER 1982 - REVISED JUNE 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±35 mA
Continuous current through V _{CC} or GND	±70 mA
Package thermal impedance, θ_{JA} (see Note 2): D package	73°C/W
N package	67°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

			SI	N54HC59	95	SN74HC595			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		2	5	6	2	5	6	V
		$V_{CC} = 2 V$	1.5			1.5			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			3.15			V
		V _{CC} = 6 V	4.2			4.2			
	Low-level input voltage	$V_{CC} = 2 V$	0		0.5	0		0.5	
VIL		$V_{CC} = 4.5 V$	0		1.35	0		1.35	V
		V _{CC} = 6 V	0		1.8	0		1.8	
VI	Input voltage		0		VCC	0		VCC	V
Vo	Output voltage		0		VCC	0		VCC	V
		$V_{CC} = 2 V$	0		1000	0		1000	
tt‡	Input transition (rise and fall) time	$V_{CC} = 4.5 V$	0		500	0		500	ns
		V _{CC} = 6 V	0		400	0		400	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

[‡] If this device is used in the threshold region (from V_{IL}max = 0.5 V to V_{IH}min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at tt = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS			Т	A = 25°C	;	SN54H	C595	SN74HC595		
PARAMETER			Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		1.9		
		I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		
			6 V	5.9	5.999		5.9		5.9		
VOH	$V_I = V_{IH} \text{ or } V_{IL}$	$Q_{H'}$, $I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		V
		$Q_A - Q_H$, $I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		
		Q _{H'} , I _{OH} = -5.2 mA	6 V	5.48	5.8		5.2		5.34		
		Q _A -Q _H , I _{OH} = -7.8 mA		5.48	5.8		5.2		5.34		
	VI = VIH or VIL	I _{OL} = 20 μA	2 V		0.002	0.1		0.1		0.1	
			4.5 V		0.001	0.1		0.1		0.1	
			6 V		0.001	0.1		0.1		0.1	
VOL		$Q_{H'}$, $I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33	V
		$Q_A - Q_H$, $I_{OL} = 6 \text{ mA}$	4.0 V		0.17	0.26		0.4		0.33	
		Q _H ′, I _{OL} = 5.2 mA	6 V		0.15	0.26		0.4		0.33	
		Q_A-Q_H , $I_{OL} = 7.8 \text{ mA}$	<u> </u>		0.15	0.26		0.4		0.33	
Ц	$V_I = V_{CC} \text{ or } 0$		6 V		±0.1	±100		±1000		±1000	nA
loz	VO = ACC or 0		6 V		±0.01	±0.5		±10		±5	μΑ
Icc	$V_I = V_{CC} \text{ or } 0,$	IO = 0	6 V			8		160		80	μΑ
Ci			2 V to 6 V		3	10		10		10	pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			N	T _A = 1	25°C	SN54F	IC595	SN74F	UNIT	
			VCC	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	0	6	0	4.2	0	5	
f _{clock} Clock frequency			4.5 V	0	31	0	21	0	25	MHz
			6 V	0	36	0	25	0	29	
			2 V	80		120		100		
		SRCLK or RCLK high or low	4.5 V	16		24		20		
	Pulse duration		6 V	14		20		17		
tw	Pulse duration		2 V	80		120		100		ns
		SRCLR low	4.5 V	16		24		20		
			6 V	14		20		17		
		SER before SRCLK [↑]	2 V	100		150		125		
			4.5 V	20		30		25		
			6 V	17		25		21		
			2 V	75		113		94		
			4.5 V	15		23		19		
	Cotup time		6 V	13		19		16		
t _{su}	Setup time		2 V	50		75		65		ns
		SRCLR low before RCLK [↑]	4.5 V	10		15		13		
			6 V	9		13		11		
			2 V	50		75		60		
		SRCLR high (inactive) before SRCLK↑	4.5 V	10		15		12		
				9		13		11		
			2 V	0		0		0		
^t h	Hold time, SER af	ter SRCLK↑	4.5 V	0		0		0		ns
			6 V	0		0		0		

[†] This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead the storage register.

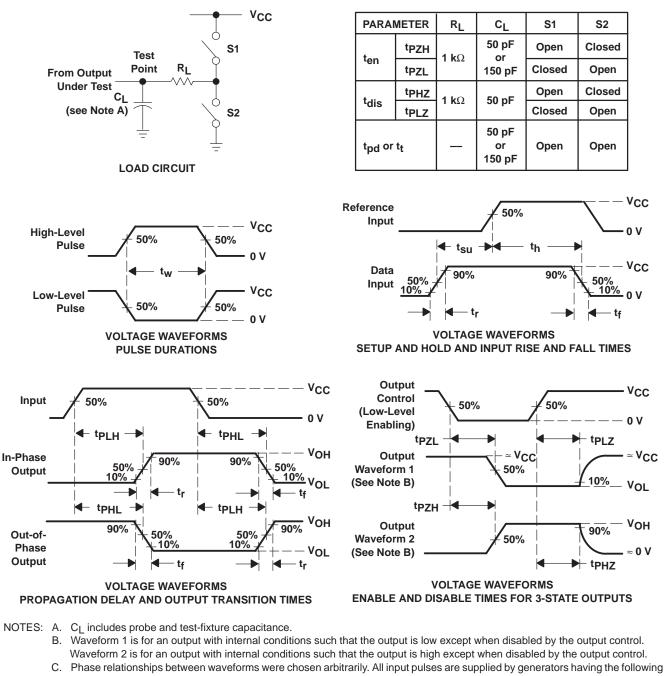
SN54HC595, SN74HC595 **8-BIT SHIFT REGISTERS** WITH 3-STATE OUTPUT REGISTERS

SCLS041C - DECEMBER 1982 - REVISED JUNE 2000

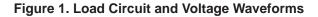
switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то		T	₄ = 25°C	;	SN54H	IC595	595 SN74HC595		
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	6	26		4.2		5		
fmax			4.5 V	31	38		21		25		MHz
			6 V	36	42		25		29		
			2 V		50	160		240		200	
	SRCLK	Q _H ′	4.5 V		17	32		48		40	
4 .			6 V		14	27		41		34	
^t pd			2 V		50	150		225		187	ns
	RCLK	Q _A –Q _H	4.5 V		17	30		45		37	
			6 V		14	26		38		32	
	SRCLR	Q _H ′	2 V		51	175		261		219	ns
^t PHL			4.5 V		18	35		52		44	
			6 V		15	30		44		37	
	OE	Q _A –Q _H	2 V		40	150		225		187	ns
ten			4.5 V		15	30		45		37	
			6 V		13	26		38		32	
			2 V		42	200		300		250	
^t dis	OE	Q _A –Q _H	4.5 V		23	40		60		50	ns
			6 V		20	34		51		43	
			2 V		28	60		90		75	
		Q _A –Q _H	4.5 V		8	12		18		15	ns
* .			6 V		6	10		15		13	
tt			2 V		28	75		110		95	
		Q _{H′}	4.5 V		8	15		22		19	
			6 V		6	13		19		16	

switching characteristics over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	Vee	Τį	ן = 25°C	;	SN54H	IC595	SN74H	IC595	UNIT
PARAIVIETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		60	200		300		250	
^t pd	RCLK	Q _A –Q _H	4.5 V		22	40		60		50	ns
			6 V		19	34		51		43	
	ŌĒ	Q _A –Q _H	2 V		70	200		298		250	
t _{en}			4.5 V		23	40		60		50	ns
			6 V		19	34		51		43	
			2 V		45	210		315		265	
tt		Q _A –Q _H	4.5 V		17	42		63		53	ns
			6 V		13	36		53		45	

operating characteristics, $T_A = 25^{\circ}C$


PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance	No load	400	pF

PARAMETER MEASUREMENT INFORMATION

- characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
- D. For clock inputs, fmax is measured when the input duty cycle is 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. tpLz and tpHz are the same as tdis.
- G. tpzL and tpzH are the same as ten.
- H. tpLH and tpHL are the same as tpd.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated