Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These devices contain four independent 2-input NOR gates. They perform the Boolean function $\mathrm{Y}=\overline{\mathrm{A}+\mathrm{B}}$ or $\mathrm{Y}=\overline{\mathrm{A}} \bullet \overline{\mathrm{B}}$ in positive logic.
The SN54HC02 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HCO2 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each gate)	
INPUTS OUTPUT A B Y H X L X H L L L H	

logic symbol \dagger

SN54HC02 . . . J OR W PACKAGE
SN74HC02... D, DB, N, OR PW PACKAGE (TOP VIEW)

1Y 1	
1A 2	213
1B 3	$3 \quad 12$
$2 Y 4$	$4 \quad 11$
2 A 5	510
2B 6	$6 \quad 9$
GND 7	78

SN54HC02 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the $\mathrm{D}, \mathrm{DB}, \mathrm{J}, \mathrm{N}, \mathrm{PW}$, and W packages.
logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

absolute maximum ratings over operating free-air temperature range \dagger

$$
\begin{aligned}
& \text { Continuous output current, } \mathrm{I}_{\mathrm{O}}\left(\mathrm{~V}_{\mathrm{O}}=0 \text { to } \mathrm{V}_{\mathrm{CC}}\right) \text {. } \pm 25 \mathrm{~mA} \\
& \text { Continuous current through VCC or GND . } \pm 50 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{J A} \text { (see Note 2): D package . } 127^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DB package } 158^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { N package . } 78^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { PW package . } 170^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \text {. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. } \\
& \text { 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace } \\
& \text { length of zero. }
\end{aligned}
$$

recommended operating conditions

			SN54HC02			SN74HC02			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		2	5	6	2	5	6	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0		0.5	0		0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		1.35	0		1.35	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	0		1.8	0		1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		$\mathrm{V}_{\text {CC }}$	0		V_{CC}	V
t_{t}	Input transition (rise and fall) time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0		1000	0		1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		500	0		500	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	0		400	0		400	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC02		SN74HC02		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{IOH}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{I}^{\mathrm{OH}}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{I} \mathrm{OL}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{IOL}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0 ,	$\mathrm{I}=0$	6 V			2		40		20	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10		10	pF	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC02		SN74HC02		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tpd }}$	A or B	Y	2 V		45	90		135		115	ns
			4.5 V		9	18		27		23	
			6 V		8	15		23		20	
t_{t}		Y	2 V		38	75		110		95	ns
			4.5 V		8	15		22		19	
			6 V		6	13		19		16	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $C_{\text {pd }} \quad$ Power dissipation capacitance per gate | No load | 22 | pF |

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

